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Summary 

Research data on α-aminoadipic acid (α-AAA), a 
structural analogue of glutamate, which is toxic to glial 
cells, shows that: it has three isomers (L, D and DL); L- α-
AAA is the most toxic on glial cells; the toxic effect 
depends on the dosage and postnatal moment of exposure; 
in retina, α-AAA shows transitional primary and 
secondary effects; there is no significant difference of the 
action of α-AAA on adult and newborn rat retina. The 
toxic effects of α-AAA can be used in a research on the 
Müller cells' function and to understand the mechanism of 
some retinal diseases, such as retinitis pigmentosa and 
diabetic maculopathy. The model of the α-AAA action on 
Müller cells can be successfully applied in research of the 
retinal transplantation.
Key words: retina, Müller cells, a-aminoadipic acid, 
postnatal development

EFFECT OF α- AMINOADIC ACID ON MÜLLER CELLS IN RETINA 

Introduction

Alpha-aminoadipic acid (α-AAA) is a structural 
analogue of glutamate, which is toxic to glial cells 
(Fig. 1). 

Alpha-AAA derives as a product of degradation 
of lysine [1, 2]. The deamination of lysine residues, 
forming allysine, may originate from six pathways 
[3]. The α-AAA amounts to 1.6 percent of the dry 
weight of the human organism [1 ,2]. High levels of 
α-AAA in serum and/or urine have been observed in 
many cases with neurological and other disorders. 
Some authors report cases with α-AAA excess in 
urine and plasma and cerebrospinal fluid in children, 
who died in the first three years of their lives [4-6]. 
The highest concentrations of α-AAA and 
deficiency of alpha-amino-adipate aminotransferase 
(kynurenine aminotransferase - KAT II) are found in 
the liver and kidney of young individuals post 
mortem [7, 8]. KAT II is present in the astrocyte-like 
cells of mammalian brains and takes part in the 
neutralization of α-AAA in the mammalian brain 
[2]. Alpha-AAA significantly increases in aging 
human skin, in diabetes in the absence of renal 
failure, and septicemia [3, 9]. The increased amount 
of-AAA in cerebrospinal fluid could be used as a 
mark to confirm the diagnosis of pyridoxine-
dependent epilepsy [6, 10]. The mechanism of α-
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AAA formation in each of these conditions needs 
to be elucidated.

Isomers of α-AAA and their different 
effects 
D-α-AAA and L-α-AAA, the structural isomers 
of α-AAA, and a combination of these –DL-α-
AAA have different effects on glial cells. 

D-α-AAA selectively reduces the "off" 
component of the Müller cell light response and 
the d-wave of the electroretinogram, and does not 
cause appreciable histological damage to the 
Müller cells [11, 12]. The D-isomer appears to be 
toxic only for mitotic cells [13].

By contrast, the injection of L-α-AAA 
selectively abolishes the "on" component of the 
intracellularly recorded Müller cell light 
response, abolishes the b-wave of the 
electroretinogram, and causes severe glial 
swelling, reduces eye growth in non-occluded 
eyes of newly-hatched chicks. The electrical 
effect of L- α-AAA suggests that the initial loss of 
the b-wave is due to the action of the amino acid 
at a synaptic site via a mechanism distinct from 
the one causing subsequent histological damage 
to glial cells [11, 12]. The L-isomer of α-AAA 
competitively inhibits the transport of D-[3H]-
aspartate, glutamine synthetase, and gamma-
glutamylcysteine synthetase [14].

The gliotoxin DL-α-AAA inhibits cystine 
uptake through cystine/glutamate antiporter 
(system Xc¯) on the glial cells and elicits a 
reduction of cellular levels of glutathione. The 
antiporter usually transports glutamate outside 
and cystine inside, thereby maintaining cellular 
concen t ra t ions  o f  g lu ta th ione .  High  
concentrations of glutamate inhibit cystine 
uptake and lead to depletion of cellular levels of 
glutathione. The cystine uptake with carp retina 

+
is mainly Na -independent and Cl¯-dependent as 
already described as a characteristic ion 
dependency of the Xc¯antiporter. DL-α-AAA 
induces a loss of electroretinographic b-wave 
20–30 h after the treatment [15]. DL-α-AAA 
reduces responsiveness to glutamine synthetase 

(a differentiation marker of embryonic neural 
retina) induction by 60–90% due to preferential 
damage to Müller cells. The selective toxicity of 
DL-α-AAA for Müller cells is greatly reduced by 
carbonic anhydrase activity, another enzyme 
localized predominantly in Müller cells, but has 
not been reported to affect γ-aminobutyric acid 
transaminase and choline acetyl transferase in 
organ cultures of retina tissue from chick 
embryos [16]. 

D-α-AAA and DL-α-AAA, respectively, 
induce mild and extreme gliotoxic but not 
neurotoxic changes. The non-neurotoxicity of 
DL-α-AAA implies effective antagonism by D-
α-AAA of the neurotoxicity of L-α-AAA. D-α-
AAA is recognized as an effective antagonist of 
amino acid excitants and is thought to block 
specifically the excitatory receptor [17].

Effects of α-AAA in CNS
Astrocytes in the corpus striatum [18] and 
amygdala of adult rats [19], in postnatal mouse 
cerebellum [20, 21], in the arcuate hypothalamic 
nucleus of infant mice [22] , in cortical astrocytes 
[23], and in rat hippocampus [24] show clear 
structural degeneration (karyopyknosis in 50%), 
profound loss of glial fibrillary acidic protein and 
S100β-positive [19], inhibition of protein 
synthesis and associated lack of induction of 
HSP70 and HO-1 (heat shock or stress proteins) 
[23] 1 to 3 days after the injection of L-α-AAA or 
DL-α-AAA.

Rats develop severe limbic seizures between 
1 and 6 h after L-α-AAA injection, characterized 
by generalized convulsions and significant 
decrease of kynurenine aminotransferase (KAT) 
activity in hippocampal brain tissue [25]. The 

-/-hyperactive behaviour observed in KAT II  mice 
raised an interesting question as to whether the α-
AAA level is increased in the knockout mouse 
brain and consequently contributes to the 
pathological mechanisms of the abnormal 
behavior [2].

As an endotoxin, α-AAA influences various 
elements of glutamatergic neurotransmission and 
kills primary astrocytes in the brain. Many 
studies have shown that a high concentration of 
α-AAA inhibits glutamate transport, blocks 
glutamine synthetase, prevents the uptake of 
glutamate into synaptic vesicles and functions as 
an N-methyl-d-aspartate (NMDA) receptor 
agonist. These effects can contribute to an 
increased excitatory tone because synaptic 
glutamate concentrations are elevated [19, 26].

Figure 1. Chemical structure of alpha-aminoadipic 
acid (α-AAA) showing its similarity to glutamate 
(according to West EL et al., 2008)
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Effects of α-AAA in rat retina
After α-AAA application (subcutaneous, 
subretinal or intravitreal) marked swelling 
Müller cells, astrocytes and oligodendrocytes but 
no changes in the microglia are observed [19, 26, 
27,]. The downstream effects of α-AAA occur in 
a time-specific manner, resulting first in early 
gliotoxicity, followed by an apparent secondary 
neurotoxicity on photoreceptors, horizontal and 
ganglion cells [28-30]. 

Suggested modes of action include: inhibition 
of glutamate uptake, resulting in possible 
neuroexcitotoxicity; inhibition of cystine uptake 
through cystine/glutamate antiporter, leading to 
reduced levels of intracellular antioxidant 
glutathione and eventually causing cellular 
damage and oxidative stress [15, 25, 26, 31-34]. 
There are two possible reasons for the toxicity: 
firstly, the increasing concentration of the toxin 
would inhibit neuronal transport of glutamate, 
and secondly, the prolonged inhibition of either 
glial or neuronal transport would lead to elevated 
glutamate concentrations in the synaptic cleft, 
activation of post-synaptic receptors and a 
process of disruption of glutamatergic function 
[34].

In investigations, the disruption of Müller cell 
function has been evidenced by decreased 
glutamine synthetase activity and cellular 
retinaldehyde-binding protein (CRALBP) 
immunoreactivity, increased glial fibrillary 
acidic protein (GFAP) [31, 35-37] and loss of 
v i m e n t i n  a n d  t h e  b - w a v e  o n  t h e  
electroretinogram [29]. The delayed expression 
of βAPP and B-cell lymphoma/leukemia-2 (Bcl-
2) in developing Müller glial cells until 3–5 
weeks post-injection is found. Normally, βAPP 
and Bcl-2 express in the proximal part of the 
radial processes of Müller glial cells from the 
second postnatal week on. These changes may 
result in a rapid increase in the intracellular level 

2+of free Ca  and severe disruption of the process 
of turnover of neurotransmitter or production of 
antioxidant such as glutathione [36, 37].

Swelling, nuclear changes, marked loss of 
cytoplasmic substance [22, 28, 30, 31], 
disruption of the Müller cells' plasma membranes 
[29], followed by disruption of the outer limiting 
membrane (OLM) can be observed [27] in the 
first three days after the α-AAA application. 

AAA treatment of early post-natal mice 
results in localized disruption of the contacts 
between Müller cells and photoreceptors [27, 
28]. At hour six after application, vacuoles are 
detected in apical processes of the Müller cells at 

the margin of the OLM, and zonulae adherentes 
between Müller cells and photoreceptors are 
irregular or absent [27, 39].

The disruption of OLM is a possibility of 
photoreceptors to be displaced from their normal 
position and move to outer segments in the 
subretinal space. 

Treatment with α-AAA (P1-P3) leads to 
clumps of photoreceptors, displaced through the 
inner segments, lying immediately beneath the 
retinal pigment epithelium (RPE) from the first 
days to the one month after treatment (Fig. 2, Fig 
3, Fig. 4). The photoreceptor inner and outer 
segments are significantly disturbed, vacuoles 
are present and there is a loss of outer segments. 
In rat retina, the migration of photoreceptors 
(provided by Muller cells) to the outer nuclear 
layer (ONL) is completed at postnatal day 21 
(P21). Even when α-AAA treatment is 
commenced as early as P3, several days prior to 
the formation of the ONL, the majority of 
photoreceptors migrate to their correct position 
and form inner and outer segments. Therefore, 
the signals for photoreceptor migration are either 
provided by the Müller cells prior to P3, or, 
alternatively, are derived from different intrinsic 
or extrinsic cues [27, 28, 39, 40]. 

Alpha-AAA can induce progenitor properties 
of Muller cells in the adult mouse. α-AAA 
induces  the  mature  Mül le r  ce l l s  to  
dedifferentiate, express the progenitor cell 
markers nestin and Chx10, migrate to the ONL, 
and divide and generate new photoreceptors. The 
acute neuronal injury leads to neuronal release of 
glutamate, which serves as a signal to stimulate 
neurogenesis from progenitor cells in the mature 
retina and CNS. It is not known whether 
glutamate activates progenitor cell properties by 
binding to receptors on Müller glia or entering the 
cells via glutamate transporters. Müller glial cells 
in the adult mouse retina can be reverted to a 
progenitor-like state and generate new neurons 
and photoreceptor cells [41-43]. 

A significant reduction in numerical density 
of cells with large somata in the ganglion cell 
layer is seen in the neonatally injected retinas at 
P56 (Fig. 3). In the ganglion layer, loss of 
immunoreactivity to vimentin is found, and a 
delayed expressed on βAPP or Bcl-2 from 5 to 35 
days after injection. In normal developing 
retinas, βAPP and Bcl-2 is expressed primarily 
but transiently in a small number of neurons in 
the ganglion cell layer during the first postnatal 
week and in the endfeet [32, 38].

In contrast, no detectable changes in the 
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expression of  βAPP and Bcl-2 are observed in 
the retina that has received α-AAA as adults. 
These results indicate that the gliotoxin α-AAA 
has long lasting effects on the expression of βAPP 
and Bcl-2 in Müller glial cells, as well as in 
neurons in the developing but not in mature 
retina. The loss of metabolic activity of Müller 
glial cells occurs long before any significant 
changes in the density and somal sizes of the cells 
in the GCL have provided evidence that the loss 
of neurons in retinas injected with α-AAA is 
likely to be secondary to toxic effect of α-AAA on 
the  Müller glial cells during development [42, 
43].

Alpha-AAA induces vascular telangiectasis 
and increases vascular permeability from 4 days 
to over 2 months post-injection in all three layers 
of the retinal vasculature, which co-localized 
with areas of Müller cell disruption. It is 
accompanied by increased expression of vascular 
endothelial growth factor and reduces expression 
of the tight junction protein claudin-5. These 
findings suggest that glial dysfunction is a 
primary contributor to the blood retinal barrier 
(BRB) breakdown in retinal vascular diseases. 
Müller glial dysfunction has been associated with 
retinal compromise including neuronal damage 
and breakdown of the inner BRB. Vascular 

Figure 2. Displaced photoreceptor cell bodies 
through inner segment and disruption of the inner 
limiting membrane are seen 1 week after 
subcutaneous AAA applications in developing rat 
retina (Magnification x1000)

Figure 3. Displaced photoreceptor cell bodies in 
inner and outher segment, displaced may be 
amacrine cell bodies in IPL(A) and dilated blood 
vessels are seen at 16 days (B) after subcutaneous 
AAA applications in developing rat retina 
(Magnification x400)

B

А

changes induced by DL α-AAA are seen 
predominantly in regions of glial disruption, as 
reflected by reduced expression of glutamate 
synthetase and increased expression of glial 
fibrillary acidic protein and vimentin [39, 44, 45]. 

Müller glia may actually facilitate donor cell 
migration into the ONL of the recipient retina or 
play a role in supporting rod differentiation, and 
the transient toxic effects of α-AAA may impede 
or reduce these supportive functions. OLM 
disruption can facilitate movement of cells in the 
opposite direction, significantly enhancing the 
number of donor photoreceptors integrated into 
the recipient ONL after transplantation into the 
subretinal space [41, 46].
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Figure 4. Displaced photoreceptor cell bodies in inner and outer segment, amacrine cell bodies may be displaced 
in IPL. Dilated blood vessels are seen 1 month after subcutaneous AAA applications in developing rat retina 
(Magnification x400)
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The effects of α-AAA depend on the dosage 
and time. The morphological changes begin in 
the first three days after the application of α-AAA 
and recovery  s ta r t s  one  week af te r  
administration. Photoreceptor organization 
appears largely normal two weeks following 
injection [28, 42]. Changes including reduction 
in numerical density in the ganglion cell layers 
are observed in the neonatally injected retinas at 
P56 [38]. One week after α-AAA treatment, 
retina shows significant recovery of OLM 
integrity, recovery of inner and outer segment 
organization, although small numbers of 
vacuoles are still present in the inner segment 
region. Disruption of the inner limiting 
membrane, loss of retinal layers, degeneration of 

the photoreceptor inner/outer segments and 
displaced photoreceptor cell bodies through 
inner segment is presented 3 weeks post high 
dosages of  AAA injection (Fig. 3). 

The different routes of administration 
including: intravitreal (20 μg/μl), subretinal (10 
μg/μl) and subcutaneous (0.7–2.7 mg/g body 
weight) injection show some differences in 
toxicity of α-AAA. Retinae failed to recover 
normal histological morphology following 
subretinal injection, while subcutaneous 
in jec t ions  have  resul ted  in  var iable  
m o r p h o l o g i c a l  c h a n g e s .  I n t r a v i t r e a l  
administration has caused modest and reversible 
morphological changes [27, 28, 30, 40].

Effects of α-AAA acid in retina of other 
animals
The gliotoxic efficacy (the reversible suppression 
of glutamate synthetase and electroretinographic 
b-wave activities) of L-α-AAA is two-fold higher 
than that of DL-α-AAA in carp (Cyprinus carpio) 
retina in vivo [47], in isolated guinea pig retinal 

glial cells [48], and in both frog and chicken [49]. 
L α-AAA reduces the level of carbonic anhydrase 
a c t i v i t y,  a n o t h e r  e n z y m e  l o c a l i z e d  
predominantly in Müller cells. Susceptibility of 
Müller cells to α-AAA is found to increase with 
embryonic development of the retina in cultures 
of retina tissue from chick embryos [50, 51].
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The different routes of administration, 
including intravitreal ,  subret inal  and 

 

 

subcutaneous injection, show some differences 
in toxicity of α-AAA. The subretinal injection 
has the most toxic effect; and that of the 
intravitreal is modest. Subcutaneous injection 
results in a variety of morphological changes, 
though it is the easiest to apply. 

The toxic effects of α-AAA can be used to 
study in details the Müller cells functions and to 
understand the mechanism and the treatment of 
some retinal diseases, such as retinitis 
pigmentosa and diabetic maculopathy. 
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